Nilai lim_(x→0)⁡ ((x^2-1)sin⁡ 6x)/(x^3+3x^2+2x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \frac{(x^2-1) \sin 6x}{x^3+3x^2+2x} = \cdots \)

  1. -3
  2. -2
  3. 2
  4. 3
  5. 5

(UMPTN 1995)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \frac{(x^2-1) \sin 6x}{x^3+3x^2+2x} &= \lim_{x \to 0} \ \frac{(x+1)(x-1) \sin 6x}{x(x+1)(x+2)} \\[8pt] &= \lim_{x \to 0} \ \frac{(x-1) \sin 6x}{x(x+2)} \\[8pt] &= \lim_{x \to 0} \ \frac{(x-1)}{(x+2)} \cdot \lim_{x \to 0} \ \frac{\sin 6x}{x} \\[8pt] &= \frac{(0-1)}{(0+2)} \cdot 6 = \frac{-1}{2} \cdot 6 \\[8pt] &= -3 \end{aligned}

Jawaban A.